Резонансная частота сабвуфера что это? - Avtoshkola-Rodina.ru

Резонансная частота сабвуфера что это?

Общие сведения о Сабвуферах и Автозвуке. Форум по автозвуку. Выбор сабвуфера, расчет и изготовление авто сабвуфера. Фото и видео автозвука.

Резонансная частота сабвуфера что это?

Резонансная частота сабвуфера что это?

Сегодня на страницах БасКлуба поговорим о том, какими основными параметрами обладает автомобильный сабвуфер и попробуем в этих параметрах немного разобраться. Для чего нужны эти параметры, спросите Вы? Все просто, эти параметры нужны при проектировании правильного акустического оформления для вашего сабвуферного динамика. А можно обойтись без этого всего, без параметров и теории? Легко. И вы, на нашем форуме по автозвуку, пополните ряды пользователей, которые постоянно задают вопросы подобного плана: «а почему мой сабвуфер гудит, а не играет», «а почему мой сабвуфер играет тихо», «а почему у меня нет плотного и качественного баса» и т.д. Автомобильный сабвуфер это прежде всего отдельная акустическая система, предназначенная для качественного и полноценного воспроизведения низких частот звукового диапазона, обычно это диапазон от 20 Гц до 80 Гц. Скажем прямо, настоящего баса, глубины звучания в автомобиле без сабвуферы вы не получите никогда. Обычная акустика не способна заменить сабвуфер, она конечно пытается это сделать, но в итоге мы получаем только жалкую пародию на бас. Применение же сабвуфера позволит вам разгрузить акустику на низких частотах и позволит придать яркости и глубины звучания ваших любимых музыкальных композиций. Качество звука значительно повысится, поскольку вам не придется перегружать фронтальную акустику «басом», следовательно уменьшится и количество искажений.

Параметры
Остановимся на основных параметрах сабвуферного динамика, понимание этих параметров вам очень пригодиться в процессе проектирования и построения ящика для вашего сабвуфера. Абсолютный минимум данных для расчета сабвуферного ящика это, резонансная частота динамика Fs, полная добротность Qts и эквивалентный обьем Vas. Если вы не знаете хотя бы одного из этих параметров, а самому их измерить у вас нет возможности — браться за этот динамик не стоит. Ничего путного расчитать вы не сможете.

Резонансная частота (Fs)
Резонансная частота — это частота резонанса динамика без какого-либо акустического оформления. Она так и измеряется — динамик подвешивают в воздухе на возможно большем расстоянии от окружающих предметов, так что теперь его резонанс будет зависеть только от его собственных характеристик — массы подвижной системы и жесткости подвески. Бытует мнение, что чем ниже резонансная частота, тем лучше выйдет сабвуфер. Это верно только отчасти, для некоторых конструкций излишне низкая частота резонанса — помеха. Для ориентира: низкая — это 20 — 25 Гц. Ниже 20 Гц — редкость. Выше 40 Гц — считается высокой, для сабвуфера.

Полная добротность (Qts)
Добротность в данном случае — не качество изделия, а соотношение упругих и вязких сил, существующих в подвижной системе динамика вблизи частоты резонанса. Подвижная система динамика во много сродни подвеске автомобиля, где есть пружина и амортизатор. Пружина создает упругие силы, то есть накапливает и отдает энергию в процессе колебаний, а амортизатор — источник вязкого сопротивления, он ничего не накапливает, а поглощает и рассеивает в виде тепла. То же самое происходит при колебаниях диффузора и всего, что к нему прикреплено. Высокое значение добротности означает, что преобладают упругие силы. Это — как автомобиль без амортизаторов. Достаточно наехать на камешек и колесо начнет прыгать, ничем не сдерживаемое. Прыгать на той самой резонансной частоте, которая присуща этой колебательной системе. Применительно к громкоговорителю это означает выброс частотной характеристики на частоте резонанса, тем больий, чем выше полная добротность системы. Самая высокая добротность, измеряемая тысячами — у колокола, который в результате ни на какой частоте, кроме резонансной звучать не желает, благо еще, что этого от него никто и не требует. Популярный метод диагностики подвески машины покачиванием — не что иное как измерение добротности подвески кустарным способом. Если теперь привести подвеску в порядок, то есть прицепить параллельно пружине амортизатор, накопленная при сжатии пружины энергия уже не вся вернется обратно, а частично будет загублена амортизатором. Это — снижение добротности системы. Теперь опять вернемся к динамику. С пружиной у динамика все, вроде бы, ясно. Это — подвеска диффузора. А амортизатор? Амортизаторов — целых два, работающих параллельно. Полная добротность динамика складывается из двух: механической и электрической.

Механическая добротность определяется главным образом выбором материала подвеса, причем в основном — центрирующей шайбы, а не внешнего гофра, как иногда полагают. Больших потерь здесь обычно не бывает и вклад механической добротности в полную не превышает 10 — 15%. Основной вклад принадлежит электрической добротности. Самый жесткий амортизатор, работающий в колебательной системе динамика — это ансамбль из звуковой катушки и магнита. Будучи по своей природе электромотором, он как и полагается мотору, может работать как генератор и именно этим и занят вблизи частоты резонанса, когда скорость и амплитуда перемещения звуковой катушки — максимальны. Двигаясь в магнитном поле, катушка вырабатывает ток, а нагрузкой для такого генератора служит выходное сопротивление усилителя, то есть практически — ноль. Получается такой же электрический тормоз, каким снабжены все электрички. Там тоже при торможении тяговые двигатели заставляют работать в режиме генераторов, а нагрузка их — батареи тормозных сопротивлений на крыше. Величина вырабатываемого тока будет, естественно, тем больше, чем сильнее магнитное поле, в котором движется звуковая катушка. Получается, что чем мощнее магнит динамика, тем ниже, при прочих равных, его добротность. Но, конечно, поскольку в формировании этой величины участвуют и длина провода обмотки, и ширина зазора в магнитной системе, окончательный вывод только на основании размера магнита было бы делать преждевременно. А предварительный — почему нет? Базовые понятия — низкой считается полная добротность динамика меньше 0,3 — 0,35, высокой больше 0,5 — 0,6.

Эквивалентный объем (Vas)
Большинство современных головок громкоговорителей основано на принципе «акустического подвеса». Концепция акустического подвеса заключается в установке динамика в такой объем воздуха, упругость которого сопоставима с упругостью подвеса динамика. При этом получается, что в параллель к уже имеющейся в подвеске пружине поставили еще одну. Эквивалентным объемом будет при этом такой, при котором веновь появившаяся пружина равна по упругости уже имевшейся. Величина эквивалентного объема определяется жесткостью подвеса и диаметром динамика. Чем мягче подвес, тем больше будет величина воздушной подушки, присутствие которой начнет беспокоить динамик. То же происходит с изменением диаметра диффузора. Большой диффузор при одном и том же смещении будет сильнее сжимать воздух внутри ящика, тем самым испытывая большую ответную силу упругости воздушного объема. Именно это обстоятельство зачастую определяет выбор размера динамика, исходя из имеющегося объема для размещения его акустического оформления. Большие диффузоры создают предпосылки для высокой отдачи сабвуфера, но требуют и больших объемов. У эквивалентного объема интересные родственные связи с резонансной частотой, без осознания которых легко промахнуться. Резонансная частота определяется жесткостью подвеса и массой подвижной системы, а эквивалентный объем — диаметром диффузора и той же жесткостью. В результате возможна такая ситуация: предположим, имеется два динамика одинакового размера и с одинаковой частотой резонанса. Но только у одного из них это значение частоты получилось вследствие тяжелого диффузора и жесткой подвески, а у другого — наоборот, легкого диффузора на мягком подвесе. Эквивалентный объем у такой парочки при всей внешней схожести может различаться очень существенно, и при установке в один и тот же ящик результаты будут драматически различны.

Параметры Тиля — Смолла (Fs, Qts, Vas)

Тиль и Смолл

Тиль и Смолл это два ученых, которые сформировали единый, общепринятый подход к вычислению характеристик низкочастотных динамиков на основе основных параметров (Fs, Qts, Vas).

Читайте также  Как крепить видеорегистратор в машине?

Невил Тиль/A. Neville Thiele (слева), Ричард (Рихард) Смолл/Richard Small (справа)

Параметры Тиля — Смолла определяют поведение динамика в диапазоне низких частот

Для нас с вами эти параметры очень важны, так как они используются для расчета правильного акустического оформления динамика или проще — для расчета корпуса сабвуфера. Все необходимые данные вы можете найти в технической документации на саб, часто они указываются и на коробках. Ниже мы подробнее рассмотрим основные параметры для понимания звуковых процессов и нюансов при выборе сабвуфера.

Параметры (Fs, Qts, Vas)

Fs — резонансная частота динамика

Резонансная частота (Fs) — частота резонанса сабвуфера без акустического оформления (без корпуса).

Fs меньше 25 Гц считается низкой, а больше 40 Гц — высокой. Резонансная частота зависит от общей жесткости подвеса сабвуфера и массы его подвижной системы. Общая жесткость, в свою очередь, зависит от жесткости центрирующей шайбы и жесткости подвеса диффузора.

Сms — гибкость подвеса подвижной системы динамика, м/Н,

Mms — масса подвижной системы (включая массу двигаемого воздуха), кг.

Qts — полная добротность

Полная добротность (Qts) — это упругость (контроль) динамика в районе резонансной частоты (Fs).

Другими словами — чем выше добротность, тем сильнее «болтается» саб в районе своей резонансной частоты (Fs), а чем ниже, тем эффективнее колебания гасятся (контролируются).

Складывается из механической добротности, которая зависит в основном от материала центрирующей шайбы, а не подвеса диффузора, как многие думают и электрической добротности, зависящей от величины магнита, длины обмотки катушки и ширины зазора в магнитной системе. От полной добротности механическая составляет 10-15%, а электрическая 90-85%, соответственно.

Низкой добротностью считается значение 0.3-0.35, высокой — 0.5-0.6.

,

  • Qms — механическая добротность на частоте Fs,

,

Fs — резонансная частота динамика, Гц,

Mms — масса подвижной системы (включая массу двигаемого воздуха), кг,

Rms — механическое сопротивление подвеса подвижной системы (определяет «потери» в подвесе), Н·с/м,

  • Qes — электрическая добротность на частоте Fs,

,

Mms — масса подвижной системы (включая массу двигаемого воздуха), кг,

Fs — резонансная частота динамика, Гц,

Re — сопротивление звуковой катушки, Ом,

Bl — коэффициент электромеханической связи (индукция поля в магнитном зазоре умноженная на длину провода звуковой катушки), Тл·м.

Vas — эквивалентный объем

Эквивалентный объем (Vas) — объем воздуха в корпусе, обладающий той же упругостью, что и сабвуфер. Зависит от жесткости подвеса и площади диффузора (диаметра) динамика.

Чем больше диаметр и мягче сабвуфер, тем больше Vas.

Нужно отметить особенность связи Vas и Fs. Так как, резонансная частота (Fs) определяется жесткостью подвеса и массой подвижной системы, а эквивалентный объем (Vas) — диаметром диффузора и той же массой подвижки, может получится, что два сабвуфера одного диаметра и с одинаковой Fs будут совершенно разными — один тяжелый и жесткий, другой легкий и мягкий. Соответственно, эквивалентный объем для этих динамиков будет совершенно разным, как и размер правильного корпуса — вот почему данный параметр очень важен при расчетах короба для саба.

Vas — эквивалентный объем, л,

,

  • ρ— 1,18421 кг/м³ — плотность воздуха при температуре 25 °C и влажности 0 %,
  • с— 346,1 м/с — скорость звука при 25 °C,
  • Sd— площадь диффузора, м.

Видео

Читать еще:

Жмите на кнопку чтобы поделиться материалом:Нажмите кнопку, чтобы поделиться материалом:

Основные параметры НЧ динамиков

Всем привет! Сегодня я постараюсь рассказать об основных параметрах автомобильных сабвуферов. Для чего же они могут понадобиться? А нужны они для того, чтобы правильно собрать короб для вашего динамика. Если не провести расчеты будущей коробки, сабвуфер будет гудеть, не будет громкого и глубокого баса. Вообще, сабвуфер — это независимая акустическая система, играющая низкие частоты от 20 ГЦ до 80 ГЦ. Можно с уверенностью сказать, что без сабвуфера никогда не получить качественного баса в автомобиле. Колонки конечно пытаются заменить НЧ динамик, но получается мягко говоря, слабо. Сабвуфер же, может помочь разгрузить колонки, взяв на себя низкочастотный диапазон, а фронтальной и тыловой акустике останется лишь играть средние и высокие частоты. Благодаря этому можно избавиться от искажений в звуке, и получить более гармоничное звучание музыки.

Теперь обсудим основные параметры низкочастотного динамика. Их понимание очень пригодится при постройке короба сабвуфера. Минимальный набор данных выглядит так: FS (резонансная частота динамика), VAS (эквивалентный объем) и QTS (полная добротность). Если неизвестно значение хотя бы одного параметра, лучше отказаться от этого динамика, т.к. рассчитать объем короба не получится.

Резонансная частота (Fs)

Резонансная частота — это частота резонанса НЧ головки без оформления, т.е. без полки, короба… Измеряется она следующим образом: динамик подвешивается в воздухе, как можно дальше от окружающих предметов. Так его резонанс будет зависеть только от него самого, т.е. от массы его подвижной системы и жесткости подвеса. Есть мнение, что низкая резонансная частота позволяет сделать отличный сабвуфер. Это не совсем верно, для определенных конструкций слишком низкая частота резонанса будет только помехой. Для справки: низкая частота резонанса, это 20-25 ГЦ. Редко встретишь динамик, у которого резонансная частота ниже 20 ГЦ. Ну а выше 40 ГЦ, будет слишком высоко для сабвуфера.

Полная добротность (Qts)

В данном случае означает не качество изделия, а соотношение вязких и упругих сил, существующих в подвижной системе НЧ головки около частоты резонанса. Подвижная система динамика очень похожа на подвеску автомобиля, в которой есть амортизатор и пружина. Пружина создает упругие силы, то есть собирает и отдает энергию в процессе движения. В свою очередь амортизатор, является источником вязкого сопротивления, он не накапливает ничего, а лишь поглощает и рассеивает в виде тепла. Аналогичный процесс происходит при колебании диффузора и всего, что к нему крепится. Чем выше значение добротности, тем сильнее преобладают упругие силы. Это примерно как машина без амортизаторов. Наедешь на небольшую кочку, и колеса запрыгает на одной пружине. Если говорить о динамике, это означает выброс с частотной характеристики на частоте резонанса, тем больший, чем больше полная добротность системы. Наивысшая добротность измеряется тысячами, и только у колокола. Он звучит исключительно на резонансной частоте. Распространенный способ проверки подвески автомобиля покачиванием из стороны в сторону, является кустарным способом измерения добротности подвески. Амортизатор губит энергию, которая появилась при сжатии пружины, т.е. она не вся вернется обратно. Количество загубленной энергии и есть добротность системы. Вроде бы с пружиной все ясно — её роль выполняет подвеска диффузора. Но где же амортизатор? А их тут целых два, причем работают они параллельно. Полная добротность состоит из двух: электрической и механической.

Механическая добротность обычно определяется выбором материала подвеса, в основном — центрирующей шайбы. Как правило, потери тут минимальны, и полная добротность состоит из механической лишь на 10-15%.

Большую часть составляет электрическая добротность. Самый жесткий амортизатор, имеющийся в двигательной системе динамика, это тандем магнита и звуковой катушки. Являясь по сути электромотором, он работает как генератор вблизи частоты резонанса, когда скорость и амплитуда движения звуковой катушки максимальны. Передвигаясь в магнитном поле, катушка вырабатывает ток, а нагрузкой генератора является выходное сопротивление усилителя, т.е. ноль. В итоге получается такой же электрический тормоз, как на электричках. Там примерно также тяговые двигатели заставляют работать в режиме генераторов, а батареи тормозных сопротивлений на крыше являются нагрузкой. Величина вырабатываемого тока будет зависеть от магнитного поля. Чем сильнее магнитное поле, тем больше будет величина тока. В итоге получается, что чем мощнее магнит динамика, тем ниже его добротность. Но, т.к. при вычислении этой величины нужно принять во внимание и длину провода обмотки, и ширину зазора в магнитной системе, окончательный вывод делать на основании размера магнита будет не правильно.

Читайте также  Как заглушить gps маяк в машине?

Для справки: низкая добротность динамика будет меньше 0,3, а высокая больше 0,5.

Эквивалентный объем (Vas)

Большая часть современных динамиков основана на принципе «акустического подвеса». Смысл в том, что нужно подобрать такой объем воздуха, при котором его упругость будет соответствовать упругости подвеса громкоговорителя. То есть, добавляется еще одна пружина в подвеску динамика. Если новая пружина будет равна по упругости старой, такой объем и будет эквивалентным. Его величина определяется диаметром динамика и жесткостью подвеса.

Чем мягче будет подвес, тем больше будет величина воздушной подушки, присутствие которой начнет колебать головку. Тоже самое происходит при изменении диаметра диффузора. Большой диффузор, при одинаковом смещении, будет сильнее сжимать воздух в ящике, и тем самым будет испытывать большую отдачу. Именно на это стоит обращать внимание при выборе динамика, ведь объем короба зависит от этого. Чем больше диффузор, тем выше будет отдача сабвуфера, но и размеры короба будут внушительными. Эквивалентный объем сильно связан с резонансной частотой, не зная которых можно допустить ошибку. Резонансная частота определяется массой подвижной системы и жесткостью подвеса, а эквивалентный объем, той же жесткостью подвеса и диаметром диффузора. Может получиться так: есть два НЧ динамика одного размера и с одинаковой частотой резонанса, но у одного из них — частота резонанса зависит от тяжелого диффузора и жесткой подвески, а у второго — от легкого диффузора и мягкого подвеса. Эквивалентный объем, в этом случае, может очень существенно отличаться, и при установке в один и тот же короб, результаты будут сильно разница.

Надеюсь, я немного помог разобраться с основными параметрами НЧ динамиков.

FAQ по динамикам и сабвуферам

Введение

В последнее время стало слышно очень много вопросов про динамики и сабвуферы. Подавляющее большинство ответов можно получить на первых трех страницах любой книги, написанной профессионалами. Материал адресован в первую очередь начинающим , ленивым ;) и сельским самодельщикам, подготовлен на основе книг И.А.Алдощиной, В.К.Иоффе, отчасти Эфрусси, журнальных публикаций в Wireless Worrld , АМ и (немного) личного опыта. HЕ использовалась информация из Интернета и ФИДОнета. Материал никоим образом не претендует на полноту освещения проблемы, а представляет собой попытку объяснить на пальцах азы акустики.

Чаще всего вопрос звучит примерно так: «нашел динамик, что с ним делать?», или «Товарищч, а говорят такие сабвуферы бывают›». Здесь мы рассмотрим только один вариант решения этой проблемы: По имеющемуся динамику сделать ящик , с оптимальными параметрами на HЧ, насколько это возможно. Этот вариант сильно отличается от задачи заводского конструктора-натянуть нижнюю частоту системы до необходимой по ТУ величины

[Q] Hашел по случаю большой динамик без опознавательных знаков. Как узнать, можно ли сделать из него сабвуфер?

[A] Hужно измерить его T/S параметры. Hа основании этих данных принимать решение о виде HЧ оформления.

[Q] Что такое T/S параметры?

[A] Минимальный набор параметров для расчета HЧ оформления, предложенный Тиллем и Смоллом.

  • Fs -резонансная частота динамика без оформления
  • Qts- полная добротность динамика
  • Vas- эквивалентный объем динамика.

[Q] Как измерить T/S параметры?

[A] Для этого нужно собрать схему из генератора, вольтметра, резистора и исследуемого динамика. Динамик подключается к выходу генератора с выходным напряжением несколько вольт через резистор сопротивлением порядка 1 кОм.

1. Снимаем V(F)=АЧХ сопротивления динамика в области резонанса. Динамик должен во время этого измерения находиться в свободном пространстве(вдали от отражающих поверхностей) . Hаходим сопротивление динамика на постянном токе (пригодится), записываем частоту резонанса в воздухе Fs (это та частота, на которой показания вольтметра максимальны :) , показания вольтметра Uo на минимальной частоте (ну к примеру 10 Гц) и Um на частоте резонанса Fs.

2. Hаходим частоты F1 и F2, в которых кривая V(F) пересекается с уровнем V=SQRT(Vo*Vm).

3. Hаходим Qts=SQRT(F1*F2)*SQRT(Uo/Um) / (F2-F1) это полная добротность динамика, можно сказать, важнейшая величина.

4. Для нахождения Vas нужно взять небольшой закрытый яшик объема Vc, с отверстием, немного меньшим диаметра диффузора. Плотно прислонить динамик к отверстию и повторить измерения. От этих измерений понадобится резонансная частота динамика в корпусе Fc. Hаходим Vas=Vc*((Fc/Fs)^2-1).

Эта методика написана в Аудио Магазине •4 за 99 год. Я ее не проверял.. Есть и другие, когда измеряются механические параметры головки, масса, гибкость и т.п.

[Q] У меня теперь есть параметры динамика, что с ними делать?

[A] Каждый динамик при проектировании затачивается под определенный вид акустического оформления. Чтобы узнать, подо что именно, посмотрим на добротность.

  • Qts > 1,2 это головки для открытых ящиков, оптимально 2,4
  • Qts 30 (?) экран и открытый корпус
  • Fs/Qts >50 закрытый корпус
  • Fs/Qts >85 фазоинверторы
  • Fs/Qts >105 Бандпассы (полосовые резонаторы)

Упругость, мясистость, сухость и др. подобные характеристики звука, издаваемого басовой колонкой, во многом определяются переходной характеристикой системы, образованной динамиком, нч оформлением и окружающей средой. Чтобы в этой системе не было выброса на импульсной характеристике, ее добротность должна быть меньше 0,7 для систем с излучением одной стороной динамика (закрытые и фазоинверторы) и 1,93 для двухсторонних систем (оформление типа экран и открытый ящик)

[Q] Где почитать про открытое оформление?

[A] Открытые ящики и экраны -простейший тип оформления. Достоинства: простота расчета, отсутствие повышения резонансной частоты (от размеров экрана зависит только вид частотной характеристики), почти неизменная добротность. Недостатки : большой размер передней панели. Достаточно грамотные и простые расчеты этого вида оформления можно найти в В.К. Иоффе, М.В.Лизунков. Бытовые акустические системы, М., Радио и связь . 1984. Да и в старых Радио наверняка есть примитивные радиолюбительские расчеты.

[Q] Как рассчитать закрытый ящик?

[A] Оформление «закрытый ящик» бывает двух типов, бесконечный экран и компрессионный подвес. Попадание в тот или иной разряд зависит от соотношения гибкостей подвеса динамика и воздуха в ящике, обозначается альфа (кстати говоря, первую можно померять, а вторую посчитать и изменить с помощью заполнения ). Для бесконечного экрана соотношение гибкостей меньше 3, для компрессионного подвеса больше 3-4. Можно в первом приближении считать что головки с бОльшей добротностью заточены под бесконечный экран, с меньшей-под компрессионный подвес. Для наперед взятого динамика закрытый корпус типа бесконечный экран имеет бОльший объем, чем компрессионный ящик. (Вообще говоря, когда есть динамик, то оптимальный корпус под него имеет однозначно определенный объем . Ошибки, возникшие при измерении параметров и расчетах, можно в небольших пределах поправить с помощью заполнения). Динамики для закрытых корпусов имеют мощные магниты и мягкие подвесы в отличие от головок для открытых ящиков. Формула для резонансной частоты динамика в оформлении объемом V Fс=Fs*SQRT(1+Vas/V) ,а приближенная формула, связывающая резонансные частоты и добротности головки в корпусе (индекс «с») и в открытом пространстве (индекс «s») Fc/Qtc=Fs/Qts

Другими словами, имеется возможность реализовать требуемую добротность акустической системы единственным способом, а именно выбором объема закрытого ящика. Какую добротность выбрать? Люди , которые не слышали звучания натуральных музыкальных инструментов, обычно выбирают колонки с добротностью более1,0. У колонок с такой добротностью (=1.0) наименьшая неравномерность частотной характеристики в области низших частот( а при чем здесь звук?), достигнутая ценой небольшого выброса на переходной характеристике. Максимально гладкая АЧХ получается при Q=0.7, а полностью апериодичная импульсная характеристика при Q=0.5. Hомограммы для расчетов можно взять в вышеприведенной книге.

Читайте также  Старлайн е91 как завести машину с брелка?

[Q] В статьях про колонки часто встречаются слова типа «апроксимация по Чебышеву, Баттерворту » и т.п. Какое это имеет отношение к колонкам?

[A] Акустическая система представляет собой фильтр верхних частот. Фильтр может быть описан передаточной характеристикой. Передаточную характеристику всегда можно подогнать под известную функцию. В теории фильтров используют несколько типов степенных функций, названных по имени математиков, первыми обсосавшими ту или иную функцию. Функция определяется порядком(максимальным показателем степени, т.е. H(s)=a*S^2/(b2*S^2+b1*S+b0) имеет второй порядок) и набором коэффициентов a и b (от этих коэффициентов можно потом перейти к значениям реальных элементов электрического фильтра, или электромеханическим параметрам.) Далее, когда речь будет идти об аппроксимации передаточной характеристики полиномом Баттерворта или Чебышева или еще чем-то другим, это надо понимать так, что сочетание свойств динамика и корпуса (или емкостей и индуктивностей в электрическом фильтре) получилось таким, что с наибольшей точностью частотную и фазовую характеристики можно подогнать под тот или иной полином. Наиболее гладкой частотная характеристика получается, если ее можно аппроксимировать полиномом Баттерворта. Чебышевская аппроксимация характеризуется волнообразой частотной характеристикой, и бОльшей протяженностью рабочего участка (по Госту до -14 дБ) в область низших частот.

[Q] Какой вид аппроксимации выбрать для фазоинвертора?

[A] Итак перед постройкой простого фазоинвертора нужно знать объем ящика и частоту настройки фазоинвертора(трубы, отверстия, пассивного радиатора). Если в качестве критерия выбрать наиболее гладкую АЧХ( а это не единственно возможный критерий), то получится следующая табличка А) Qts 0,5- придется допустить волны на АЧХ, по Чебышеву. В случае А) фазоинвертор настраивается на 40-80% выше частоты резонанса В случае Б)-на частоту резонанса, В случае В) ниже частоты резонанса. Кроме того в этих случаях будет и различный объем корпуса.. Для того, чтобы найти точные частоты настройки, надо взять исходные формулы, достаточно громоздкие для того, чтобы приводить их здесь. Поэтому отсылаю интересующихся в АудиоМагазин за 1999 год, после этого ликбеза там уже можно будет разобраться, или в книги Алдошиной. И даже статьи Эфрусси в Радио за 69 год сгодятся.

Заключение

Если после прочтения всего этого у Вас еще осталось желание что-то склепать самому, то можно взять в Интернете какую-нибудь программку типа WinspeakerZ и рассчитать все это самому, памятуя о том, что из Г.. конфетку не сделать . Hе следует увлекаться снижением частоты среза, ни в коем случае не нужно пытаться скомпенсировать спад АЧХ усилителем. АЧХ может чуть чуть и выровняется, а вот звук обогатится массой гармоник и субгармоник. Напротив, лучшие результаты, в смысле приятности для уха, можно достичь принудительно загубив на входе УМ самые низшие частоты, т.е. частоты ниже частоты среза HЧ колонки. Еще одно замечание, касающееся фазоинверторов, ошибка в настройке частоты резонанса фазоинвертора в 20% приводит к всплеску или спаду АЧХ на 3 дБ.

Да, чуть не забыл сказать про сабвуферы, которые на самом деле полосовые резонаторы. Добротность динамиков для них должна быть еще ниже. Простейший бандпасс тоже поддается расчету, но на этом моя любезность заканчивается.

Про резонансную частоту, часть 1

Попробуем разобраться с ключевыми параметрами динамиков. Начнем с одного из самых основных параметров — с резонансной частоты(fs). Писал очень долго и муторно, сотни раз переделывал и переписывал, и получилось многабукафф:) Поэтому разбил на две части. Во второй части будет о том, как фс ведет себя при различных оформлениях и резонанс применительно к высокочастотникам.
От вас жду дополнений и исправлений! Попробуем вместе создать действительно хорошие тексты, доступно разъясняющие основы и физику звука. Надеюсь, не только мне хочется от и до во всем разобраться:) Текст не самый легкий, поэтому включаем думалку, и вперед:) Поехали!

Итак, резонансная частота. Разумеется, этот параметр не самодостаточный и для построения сколь угодно качественной системы знания одного его будет мало.
Динамик, как и любая колебательная система, имеет свою резонансную частоту. Это не незыблемая величина, она может довольно сильно меняться в зависимости от разных факторов. Например, температура упала => подвесы задубели – резонанс возрос. Закинули динамик в ЗЯ – резонанс возрос. Накидали на колпак сортирки с ПВА – резонанс упал.
В документации к солидным динамикам всегда указывают эту величину, обозначается она Fs. Представляет собой некое значение частоты в герцах, при которой у динамика в свободном поле наблюдается резонанс. При замере динамик находится не в коробе (в идеале – на солидном удалении от любых отражающих поверхностей), он размят и замер делается при нормальной температуре. Легче всего этот резонанс определить по пику на графике зависимости сопротивления динамика от подаваемой на него частоты. Выглядит этот график примерно так:

Зная резонансную частоту, мы можем с большой долей вероятности определить, на каких частотах будет играть динамик. Динамик с резонансом в 120Гц – это отвратительный сабвуфер и очень плохой мидбас. Даже если он выглядит как сабвуфер и у него 12” дифф, огромный магнит и большая губа.
Кстати: Есть еще два параметра, которые могут полностью изменить картину – это добротность и линейный ход динамика. Например, если дин с частотой 30Гц (неплохо для саба) имеет линейный ход пару мм – это плохой саб. Сыграть красиво и низко он сможет, но очень не громко. Или если у дина с резонансом 30Гц добротность 0,15 – например, в закрытом ящике из него саба не получится. Слишком низкую добротность придется поднимать коробом, а вместе с ней в разы возрастет и результирующая частота. В общем, одной fs обойтись не удастся. Но сегодня говорим только о резонансной частоте.
Теперь смелое утверждение: динамику хорошо ВЫШЕ этой частоты. Чем выше рабочий диапазон динамика, тем более строго соблюдается это утверждение.
Например, пищалкам категорически противопоказано работать на своей Фс. Для них нужно обрезать сигнал так, чтобы на частоте резонанса они не играли вообще, пищалки должны работать значительно выше. Иначе и звук будет непотребный, и за сохранность железа никто не ответит.
Серединки и миды в крайнем случае могут работать до резонансной частоты. Если они не будут ее пересекать – это положительно отразится и на качестве звука, и на долговечности компонентов. Сабвуферы могут забираться и даже жить ниже ФС, но тут многое зависит от акустического оформления и помещения. Общая суть для сабов: чем ниже фс, тем более этот динамик сабовый. Если перед вами лежит 15-ти дюймовый дин с огромным магнитом и у него резонанс 68Гц — сабом он не станет никогда. Максимум, что из него можно будет сделать — это мидбас. Но никак не саб.
А теперь самое интересное: о чем нам может сказать Фс?
Если взять идеальный динамик, и прям перед ним повесить микрофон, АЧХ будет выглядеть примерно так:

Завал начинается как раз на частоте резонанса. А после резонанса играет относительно ровненько до тех пор, пока ему позволяет его конструкция.
Проверил это утверждение на практике. Взял три динамика и снял АЧХ (микрофон в паре см от диффа) и их Т/С параметры. Выглядят динамики так:

Алексей Рубанов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные с ремонтом автомобилей. Уверен вы найдете для себя немало полезной информации. С уважением, Алексей Рубанов.

Понравилась статья? Поделиться с друзьями:
Avtoshkola-Rodina.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: